梁の反力・曲げモーメント・たわみ
ここでは構造力学で使用する静定はりの公式を紹介します。
図 形 | 反力 | せん断力 | 曲げモーメント | たわみ角・たわみ |
![]() |
RA=Rb=P/2 | A〜C:Q=+P/2 C〜B:Q=-P/2 |
A〜C:M=Px/2 C:Mmax=PL/4 |
A〜C: y=PL3 ( 3x / L - 4x3 / L3 ) / 48 E I ymax=PL3 / 48EI |
![]() |
RA=Pb/L RB=Pa/L |
A〜C:Q=+Pb/L C〜B:Q=-Pa/L |
A〜C:M=Pbx/L C〜B: M=Pa(L-x) / L C:Mmax=Pab/L |
A〜C: y=Pa2b2 ( 2x / a + x / b - x3 / a2 b ) / 6 E I L yc=Pa2b2 / ( 3 E I L ) a > b の時, x =0.5773 √( L2 - b2 ) ymax=Pb √ ( L2 - b2 )3 / ( 9√3 E I L) |
![]() |
RA=RB=P | A〜C:Q=+P C〜D:Q=0 D〜B:Q=-P |
A〜C:M=Px C〜D: Mmax=PL/3 |
A〜C: y=PL3 ( 2x / L - 3x3 / L3 ) / 18 E I C〜D: y=PL3 ( x / L - x2 / L2 - 1 / 27 ) / 24 E I ymax=23PL3 / 648 E I |
![]() |
RA=RB=wL/2=W/2 | Q=wL / 2 - wx Qa,b= ± wL / 2 |
M= ( wLx - wx2 ) / 2 Mmax=wL2 / 8 |
y=wL4 ( x / L - 2x3 / L3 + x4 / L4 ) / 24 E I ymax=5wL4 / 384 E I |
![]() |
RA=Wb/L RB=Wa/L |
A〜C’: Q=Wcb/L C'〜C": Q= wc (( b - a ) / 2L - ( x - a ) / c ) C”〜B: Q=- wca / L |
A〜C:M=wcbx / L C'〜C": M=wc ( bx / L - ( 2x - 2a + c )2 / 8c ) C”〜B: M=wca ( L - x ) / L x=a - c / 2 + bc / ( a + b ) Mmax=wcab ( a + b ) - c / 2 ) / ( a + b )2 |
Yc=wc ( ab ( 2aL - 2a2 - c2 / 4 ) / L + c3 / 64 ) / 6 E I |
![]() |
RA=wL / 2 / 3 RB=2wL / 2 / 3 |
Q=wL ( 1 - 3x2 / L2 ) / 2 / 3 Qa=+ wL / 2 / 3 Qb=-2W/3 |
M=wLx ( 1 - x2 / L2 ) / 2 / 3 X=x = L / √3 Mmax=2wL2 / 2 / 9√3 |
y=wL4 ( 7x / L - 10x3 / L3 + 3x5 / L5 ) / 2 / 180 E I x=0.5193 L ymax=0.01304wL4 / 2 E L |
![]() |
- | Qa=- M / L Qb=- M / L |
a > b :aM / L a < b :bM / L |
ymax=M ( L2 - 3b2 )3/2 / 9√3 E I L X=√(( L 2 - 3b2 ) / 3 ) |
片持梁 | ||||
![]() |
RB=P | Q=-P | M=-Px B:Mmax=-PL |
y=PL3 ( 1 - 3x / 2L + x3 / 2L3 ) / 3 E I A:ymax=PL3 / 3 E I |
![]() |
RB=P | A〜C:Q=0 C〜B:Q=-P |
A〜C:M=0 C〜B:M=- P ( x - a ) B:Mmax=- Pb |
C〜B: y=Pb3 ( 1 - 3 ( x - a ) / 2b + ( x - a )3 / 2b3 ) / 3 E I yc=Pb3 / 3 E I ya=Pb3 ( 1 + 3a / 2b ) / 3 E I |
![]() |
RB=wL | Q=-wx QB=-wL |
M=- wx2 / 2 B:Mmax =- wL2 / 2 |
y=wL4 ( 1 - 4x / 3L + x4 / 3L4 ) / 8 E I A:ymax=wL4 / 8 E I |
![]() |
RB=wL / 2 | Q=- wx2 / 2L QB=- wL / 2 |
M=- wx3 / 6L B:Mmax =- wL2 / 6 |
y=wL4 ( 1 - 5x /4L + x5 / 4L5 ) / 30 E I A:ymax=wL4 / 30 E I |
![]() |
RB=0 | Q=0 | M=Ma M=-Ma |
y=MaL2 ( 1 - x / L )2 / 2 E I A:ymax=MaL2 / 2 E I |
両端固定 | - | - | - | - |
![]() |
RA=RB=P/2 | Q=+P/2 Q=-P/2 |
A〜C: M=PL ( - 1 + 4x / L ) / 8 C〜B: M=PL ( 3 - 4x / L ) / 8 MAB=-PL / 8 中央:+Mmax =PL / 8 |
y=PL3 ( x2 / L2 - 4x3 / 3L3 ) / 16 E I 中央:ymax=PL3 / 192 E I 反曲点:y=L / 4 , 3L / 4 |
![]() |
RA=Pb2 ( 3a + b ) / L3 RB=Pa2 ( a + 3b ) / L3 |
A〜C: Q=Pb2 ( 3a + b ) / L3 C〜B: Q=- Pa2 ( a + 3b ) / L3 |
A〜C: M=Pb2 ( - a + ( 3a + b ) x / L ) / L2 C〜B: Pa2 ( a + 2b - ( a + 3b ) x / L ) / L2 MA=- Pab2 / L2 MB=- Pa2b / L2 MC=+2Pa2b2 / L3 |
A〜C: y=Pb2x2 ( 3a / L - ( 3a + b ) x / L2 ) / 6 E I L C〜B: y=Pb2x2 ( 3a / L - ( 3a + b ) x / L2 ) / 6 E I L yc=Pa3b3 / 3 E I L3 a > b の時、x = 2bL / ( 3a + b ) ymax=2Pa3b2 / ( 3 E I ( 3a + b)2 ) 反曲点:x=aL / ( 3a + b ) , ( a + 2b ) L / ( a + 3b ) |
![]() |
RA=RB=wL/2=W/2 | Q=±wL / 2 | M=wL2 ( - 1 + 6x / L - 6x2 / L2 ) / 12 MA,B=-wL2 / 12 中央:Mc=wL2 / 24 |
y=wL4 ( x2 / L2 - 2x3 / L3 + x4 / L 4 ) / 24 E I 中央:Yc=wL4 / 384 E I 反曲点:X=0.211L , 0.789L |
![]() |
RA=3wL / 20 RB=7wL / 20 |
Q=wL ( 3 - 10x2 / L2 ) /20 | M=wL2 ( - 2 + 9x / L - 10x3 / L3 ) / 60 Ma=- wL2 / 30 Mb=- wL2 / 20 x = 0.548L +Mmax=wL2 / 23.3 |
y=wL4 ( 2x2 / L2 - 2x3 / L3 + x5 / L 5 ) / 60 E I X=0.525L:ymax=0.00262wL4 / E I 反曲点:X=0.237L , 0.808L |
![]() |
RA=5P/16 RB=11P/16 |
A〜C: Q=5P/16 C〜B: Q=- 11P/16 |
A〜C:M=5Px/16 C〜B:M=PL ( 1/2 - 11x/16L ) Mc=5PL / 32 Mb=-3PL/16 |
A〜C:y=PL3 ( x / L - 5x3 / 3L3 ) / 32 E I C〜B:y=PL3 ( - 2 / 3 + 5x / L - 8x2 / L2 + 11x3 / 3L3 ) / 32 E I |
![]() |
RA=3wL/8 RB=5wL/8 |
Q=wL(3/8-x/L ) | M=wLx(3-4x/L )/8 MB=-wL2/8 X=3L/8: +Mmax=9wL2/ 128 |
y=wL4 ( x / L - 3x3 / L3 + 2x4 / L4 ) / 48 E I X=( 1 + √33 ) L / 16 : ymax=wL4 / 184.6 E I 反曲点:X=3L/4 |
![]() |
RA=wL/10 RB=2wL/5 Q=wL ( 1/5-x2/L2 )/2 |
Q=wL(1/5-x2/L )/2 | M=wLx (1/5-x2/3L2)/2 X=L:MB=- wL2/ 15 X=L / √5: +Mmax=wL2 / 15√5 |
y=wL4 ( x / L - 2x3 / L3 + x5 / L5 ) / 120 E I X=L / √5: ymax=2wL4 / 375√5 E I 反曲点:X=√0.6 L |