梁の反力・曲げモーメント・たわみ


ここでは構造力学で使用する静定はりの公式を紹介します。

図      形 反力 せん断力 曲げモーメント たわみ角・たわみ
RA=Rb=P/2 A〜C:Q=+P/2

C〜B:Q=-P/2
A〜C:M=Px/2

C:Mmax=PL/4
A〜C:
y=PL3 ( 3x / L - 4x3 / L3 ) / 48 E I

ymax=PL3 / 48EI
RA=Pb/L

RB=Pa/L
A〜C:Q=+Pb/L

C〜B:Q=-Pa/L
A〜C:M=Pbx/L

C〜B:
M=Pa(L-x) / L

C:Mmax=Pab/L
A〜C:
 yPa2b2 ( 2x / a + x / b - x3 / a2   b ) / 6 E I L

 yc=Pa2b2 / ( 3 E I L )

a > b の時, x =0.5773 √( L2 - b2 )
ymax=Pb √ ( L2 - b2 )3 / ( 9√3 E I L)

RA=RB=P A〜C:Q=+P
C〜D:Q=0
D〜B:Q=-P
A〜C:M=Px

C〜D:
   Mmax=PL/3
A〜C:
y=PL3 ( 2x / L - 3x3 / L3 ) / 18 E I


C〜D:
y=PL3 ( x / L - x2 / L2 - 1 / 27 ) / 24 E I

ymax=23PL3 / 648 E I
RA=RB=wL/2=W/2 Q=wL / 2 - wx

Qa,b=
   ± wL / 2
M=
( wLx - wx2 ) / 2


Mmax=wL2 / 8
y=wL4 ( x / L - 2x3 / L3 + x4 / L4 ) / 24 E I

ymax=5wL4 / 384 E I
RA=Wb/L

RB=Wa/L
A〜C’:
  Q=Wcb/L


C'〜C":
  Q=
wc (( b - a ) / 2L - ( x - a ) / c )


C”〜B:
  Q=- wca / L
A〜C:M=wcbx / L

C'〜C":

 M=wc ( bx / L - ( 2x - 2a + c )2 / 8c            )
C”〜B:
 M=wca ( L - x ) /            L

x=a - c / 2 + bc /        ( a + b )
Mmax=wcab ( a + b ) - c / 2 ) / ( a + b )2
Yc=wc ( ab ( 2aL - 2a2 - c2 / 4 ) / L     + c3 / 64 ) / 6 E I
RA=wL / 2 / 3

RB=2wL / 2 / 3
Q=wL ( 1 - 3x2  / L2 ) / 2 / 3
Qa=+ wL / 2 / 3
Qb=-2W/3
M=wLx ( 1 - x2 /     L2 ) / 2 / 3

X=x = L / √3

Mmax=2wL2 / 2 / 9√3
y=wL4 ( 7x / L - 10x3 / L3 + 3x5 / L5 ) / 2 / 180 E I

x=0.5193 L

ymax=0.01304wL4 / 2 E L
- Qa=- M / L

Qb=- M / L
a > b :aM / L

a < b :bM / L
ymax=M ( L2 - 3b2 )3/2 / 9√3 E I L

X=√(( L 2 - 3b2 ) / 3 )
片持梁
RB=P Q=-P M=-Px

B:Mmax=-PL
y=PL3 ( 1 - 3x / 2L + x3 / 2L3 ) / 3 E I

A:ymax=PL3 / 3 E I
RB=P A〜C:Q=0

C〜B:Q=-P
A〜C:M=0
C〜B:M=- P (      x - a )
B:Mmax=- Pb
C〜B:
   y=Pb3 ( 1 - 3 ( x - a ) / 2b + ( x            - a )3 / 2b3 ) / 3 E I

yc=Pb3 / 3 E I
ya=Pb3 ( 1 + 3a / 2b ) / 3 E I
RB=wL Q=-wx

QB=-wL
M=- wx2 / 2

B:Mmax
    =
- wL2 / 2
y=wL4 ( 1 - 4x / 3L + x4 / 3L4 ) / 8 E I

A:ymax=wL4 / 8 E I
RB=wL / 2 Q=- wx2 / 2L

QB=- wL / 2
M=- wx3 / 6L

B:Mmax
    =- wL2 / 6
y=wL4 ( 1 - 5x /4L + x5 / 4L5 ) / 30                        E I

A:ymax=wL4 / 30 E I
RB=0 Q=0 M=Ma

M=-Ma
y=MaL2 ( 1 - x / L )2 / 2 E I

A:ymax=MaL2 / 2 E I
両端固定 - - - -
RA=RB=P/2 Q=+P/2

Q=-P/2
A〜C:
M=PL ( - 1 + 4x / L ) / 8
C〜B:
M=PL ( 3 - 4x / L ) / 8


MAB=-PL / 8
中央:+Mmax
         =
PL / 8
y=PL3 ( x2 / L2 - 4x3 / 3L3 ) / 16 E I
中央:ymax=PL3 / 192 E I

反曲点:y=L / 4 , 3L / 4
RA=Pb2 ( 3a + b )          / L3
RB=Pa2 ( a + 3b )          / L3

A〜C:
Q=Pb2 ( 3a + b )         / L3
C〜B:

Q=- Pa2 ( a + 3b        ) / L3
A〜C:
M=Pb2 ( - a + ( 3a + b ) x / L ) / L2

C〜B:
Pa2 ( a + 2b - ( a + 3b ) x / L ) / L2

MA=- Pab2 / L2
MB=- Pa2b / L2
MC=+
2Pa2b2 / L3
A〜C:
y=Pb2x2 ( 3a / L - ( 3a + b ) x / L2 )                    / 6 E I L

C〜B:
y=Pb2x2 ( 3a / L - ( 3a + b ) x / L2 )                    / 6 E I L
yc=Pa3b3 / 3 E I L3


a > b の時、x = 2bL / ( 3a + b )
ymax=2Pa3b2 / ( 3 E I ( 3a + b)2
)

反曲点:x=aL / ( 3a + b ) , ( a + 2b ) L / ( a + 3b )
RA=RB=wL/2=W/2 Q=±wL / 2 M=wL2 ( - 1 + 6x / L - 6x2 / L2 ) / 12

MA,B=-wL2 / 12

中央:Mc=wL2 /             24
y=wL4 ( x2 / L2 - 2x3 / L3 + x4 / L                    4 ) / 24 E I
中央:Yc=wL4 / 384 E I

反曲点:X=0.211L , 0.789L
RA=3wL / 20

RB=7wL / 20
Q=wL ( 3 - 10x2     / L2 ) /20 M=wL2 ( - 2 + 9x / L - 10x3 / L3 ) / 60
Ma=- wL2 / 30
Mb=- wL2 / 20
x = 0.548L


+Mmax=wL2 / 23.3
y=wL4 ( 2x2 / L2 - 2x3 / L3 + x5 / L                   5 ) / 60 E I
X=0.525Lymax=0.00262wL4 / E I

反曲点:X=0.237L , 0.808L
RA=5P/16

RB=11P/16
A〜C:
Q=5P/16
C〜B:
Q=- 11P/16
A〜C:M=5Px/16
C〜B:M=
PL ( 1/2     - 11x/16L )
Mc=5PL / 32
Mb=-3PL/16
A〜C:y=PL3 ( x / L - 5x3 / 3L3 ) /                       32 E I
C〜B:y=PL3 ( - 2 / 3 + 5x / L - 8x2 /         L2 + 11x3 / 3L3 ) / 32 E I

RA=3wL/8

RB=5wL/8
Q=wL(3/8-x/L ) M=wLx(3-4x/L   )/8
MB=-wL2/8
X=3L/8:
+Mmax=9wL2/           128
y=wL4 ( x / L - 3x3 / L3 + 2x4 / L4 ) / 48 E I
X=( 1 + √33 ) L / 16 :
ymax=wL4 / 184.6 E I

反曲点:X=3L/4
RA=wL/10

RB=2wL/5
Q=wL ( 1/5-x2/L2 )/2
Q=wL(1/5-x2/L )/2 M=wLx (1/5-x2/3L2)/2
X=L:MB=- wL2/            15
X=
L / √5
+Mmax=wL2 / 15√5
y=wL4 ( x / L - 2x3 / L3 + x5 / L5 ) / 120 E I
X=L / √5
ymax=2wL4 / 375√5 E I
反曲点:X=√0.6 L